Effect of TiO₂ on properties of magnesium oxide obtained from seawater

N. PETRIC, B. PETRIC, V. MARTINAC, M. LABOR, M. MIROŠEVIĆ-ANZULOVIĆ Faculty of Technology, University of Split, Teslina 10/V, 58000, Split, Croatia

The effect has been examined of TiO_2 on B_2O_3 content in sintered magnesium oxide samples obtained by precipitation of magnesium hydroxide in seawater with 80 or 120% of the stoichiometrical quantity of the precipitation agent, i.e. the effect of TiO_2 on product properties has been examined. Coefficients were calculated for dependent reactions of $Ca_2B_2O_5$ and $CaTiO_3$ formation.

1. Introduction

It has been established that TiO₂ affects properties of magnesium oxide obtained from seawater; even a small addition of 0.5% TiO₂ significantly increases product density at 1300 °C [1].

This paper reports on the effects of the addition of 1, 2 and 5% TiO_2 on B_2O_3 content in the product.

The magnesium oxide used had been obtained from seawater, either by non-stoichiometrical overstoichiometrical precipitation, or (precipitation of magnesium hydroxide with 80 and 120% of the stoichiometrical quantity of dolomite lime [2].

2. Experimental procedure

Magnesium hydroxide obtained from seawater was calcined at 950 °C. The magnesium oxide obtained was of the following composition
For magnesium oxide (80% p.p.tn)

$$MgO = 99.2\%$$
 $CaO = 0.59\%$

$$B_2O_3 = 0.1934\%$$

For magnesium oxide (120% p.p.tn)

$$MgO = 98.25\%$$
 $CaO = 1.32\%$

$$B_2O_3 = 0.0562\%$$

Seawater, in which the magnesium hydroxide was precipitated, was of the following composition

$$MgO = 2.423 g dm^{-3} CaO = 0.604 g dm^{-3}$$

and the composition of dolomite used was as follows

$$MgO = 42.51\% CaO = 57.15\%$$

$$Fe_2O_3 = 0.248\% Al_2O_3 = 0.093\%$$

$$SiO_2 = 0.001\%$$

Mixtures of magnesium oxide were prepared in the above composition, with 1, 2 and 5% TiO₂, respectively. TiO₂ p.a. powder Merck was used in the form of rutile. Samples were homogenized by manual stirring in absolute alcohol. Compacts were made in an hy-

draulic press at pressures of 62, 94, 156, 312, 469 and 625 MPa, respectively. The compacts were then sintered at 1300 and 1500 °C in an electric furnace: the duration of isothermal sintering was 1, 3 and 5 h, respectively. It took approximately 2 h to reach the maximum temperature in the furnace. Samples were left to cool in the furnace. The boron content in the samples was determined potentiometrically.

Table I shows the results obtained of the effect of TiO₂ on the boron content in samples sintered, relative to the method of obtaining magnesium oxide, for the operating conditions described above.

The results shown represent an average of a number of measurements. The standard deviation, σ , for MgO (80% p.p.tn) was

$$\sigma_{max} = 9.8 \, 10^{-3}$$
 and $\sigma_{min} = 4.4 \, 10^{-3}$

The standard deviation for MgO (120% p.p.tn) was

$$\sigma_{max}~=~5.0~10^{-3}~$$
 and $~\sigma_{min}~=~1.5~10^{-3}$

3. Results and discussion

Experimental data indicate that addition of TiO_2 , as well as temperature and duration of isothermal heating, greatly affects the removal of boron from the sample into the air, i.e. TiO_2 reduces the B_2O_3 content during isothermal sintering of magnesium oxide.

Different behavioural patterns relative to B_2O_3 content are encountered in magnesium oxide obtained by means of 80% precipitation compared to that obtained by means of 120% precipitation of magnesium hydroxide in seawater; this is due to different CaO contents of the samples.

Earlier papers have determined the dicalcium borate ($Ca_2B_2O_5$) content in sintered samples by means of X-ray diffraction: it has been found that during sintering B_2O_3 reacts with CaO to form $Ca_2B_2O_5$. Therefore, the higher the CaO content, the more B_2O_3 is retained in the sample, i.e. sintered samples contain a greater quantity of B_2O_3 . Thus, in MgO samples (120% p.p.tn) containing a greater quantity of CaO (1.32%), the B_2O_3 content is reduced less during

TABLE I Boron contents of sintered samples

Samples	T (°C)	t (h)	% B ₂ O ₃ in MgO without admixture	% B ₂ O ₃ in MgO + 1% TiO ₂	$ \begin{tabular}{l} \% \ B_2O_3 \\ in \ MgO \\ + \ 2\% \\ TiO_2 \end{tabular} $	
MgO (80% p.p.tn)	1300	1	0.1934	0.1395	0.0789	0.0652
		3	0.1655	0.1363	0.0752	0.0638
		5	0.1192	0.0852	0.0645	0.0587
	1500	1	0.1265	0.0434	0.0396	0.0264
		3	0.0756	0.0184	0.0170	-
		5	0.0689	0.0173	0.0159	0.0131
MgO (120% p.p.tn)	1300	1	0.0512	0.0428	0.0293	0.0165
		3	0.0459	-	0.0109	0.00856
		5	0.0376	0.0384	0.00956	0.00534
	1500	1	0.0453	0.0431	0.0116	0.00617
		3	0.0400	0.0331	0.0100	0.00605
		5	0.0318	0.0204	0.0050	0.00351

isothermal sintering than is the case with MgO (80% p.p.tn) containing less CaO (0.59%).

With MgO (120% p.p.tn) CaO is in excess, and favours Ca₂B₂O₅ formation; in MgO (80% p.p.tn) a greater quantity of boron is removed from the sample.

Addition of TiO_2 reduces the B_2O_3 content during sintering because a part of the CaO is bound in calcium titanate (CaTiO₃) [3].

In MgO (80% p.p.tn) a smaller quantity of TiO₂ (1%) binds almost all of CaO present, while in MgO (120% p.p.tn) it takes approximately 2% TiO₂ to bind all of CaO present, so that only greater TiO₂ addition (5%) affects boron removal to a greater degree.

Thus, there are two reactions which lead to a decrease in B_2O_3 content during sintering

$$2CaO + B_2O_3 = Ca_2B_2O_5$$

 $CaO + TiO_2 = CaTiO_3$

The two reactions should be analysed together, as the final B_2O_3 content in sintered samples depends on the CaO and TiO₂ contents.

An equation system analysed in open system thermodynamics was then examined [4, 5]

$$J_1 = L_{11}t + L_{12}\tau (1)$$

$$J_2 = L_{21}t + L_{22}\tau \tag{2}$$

These type of linearity laws are called phenomenological dependencies. Coefficients L_{ik} are so-called phenomenological coefficients characterizing the interdependence of two irreversible processes, "i" and "k".

The above coefficients in the system of equations must meet the following conditions

$$L_{11} \geq 0, L_{22} \geq 0, L_{12} = L_{21}$$

 $L_{11}L_{22} - L_{12}^2 = 0$

 J_1 is the per cent of B_2O_3 removed during sintering: it is calculated from experimental data on the B_2O_3 content of sintered samples and from the B_2O_3 content of calcined magnesium oxide, i.e. in the sample

before sintering. J_2 is the per cent CaO which reacted with TiO₂; τ the duration of isothermal heating; and t the temperature at 10^{-2} (°C).

Table II presents the values for J_1 and J_2 at 80% p.p.tn, and Table III the values for J_1 and J_2 at 120% p.p.tn.

Coefficients L_{11} , L_{12} , and L_{22} in Equations 1 and 2 were computationally calculated by means of a combination of the mean value method and the least squares method.

TABLE II Values of J_1 and J_2 during sintering at 80% p.p.tn

		${J}_1$			${J}_2$			
$t \setminus \tau$	1	3	5	$t \setminus \tau$	1	3	5	
For 1	% TiO ₂							
13	27.87	_	55.95	13	61.19	_	76.46	
15	77.56	90.49	91.05	15	85.54	93.25	93.54	
For 2	% TiO ₂							
13	59.20	61.12	66.65	13	77.57	78.56	81.45	
15	79.52	91.21	91.78	15	87.57	93.62	93.89	
For 5	% TiO ₂							
13	66.29	67.01	69.70	13	81.26	81.62	83.04	
15	86.35	_	93.23	15	91.10	_	94.66	

TABLE III The values of J_1 and J_2 at 120% p.p.tn

		\boldsymbol{J}_1	${J}_1$		J_2			
t\τ	1	3	5	$t \setminus \tau$	1	3	5	
For 1	% TiO ₂							
13	23.81	_	31.69	13	52.52	-	52.52	
15	23.31	41.16	63.70	15	93.06	94.26	95.76	
For 2	% TiO ₂							
13	47.85	80.64	83.02	13	95.32	95.57	97.73	
15	96.84	97.01	97.64	15	79.36	82.21	91.10	
For 5	% TiO ₂							
13	70.64	84.75	90.50	13	96.89	97.85	98.24	
15	89.02	89.23	93.75	15	97.47	97.50	97.81	

TABLE IV Equations for J_1 and J_2 with the calculated coefficients L_{11} , L_{12} and L_{22} for each percent of TiO₂ added, for 80% and 120% precipitation, respectively

For 80% p.p.tn	For 120% p.p.tn				
For 1% TiO ₂					
$J_1 = 3.9411 t + 4.6189 \tau$	$J_1 = 1.8155 t + 3.7793 \tau$				
$J_2 = 4.6189 t + 4.8140 \tau$	$J_2 = 3.7793 t + 5.9798 \tau$				
For 2% TiO ₂					
$J_1 = 4.3421 t + 4.9044 \tau$	$J_1 = 4.9090 t + 5.2364 \tau$				
$J_2 = 4.9044 t + 4.6067 \tau$	$J_2 = 5.2364 t + 4.7514 \tau$				
For 5% TiO ₂					
$J_1 = 4.4856 t + 5.0239 \tau$	$J_1 = 4.9594 t + 5.6129 \tau$				
$J_2 = 5.0239 t + 4.3569 \tau$	$J_2 = 5.6129 t + 2.6914 \tau$				

Table IV shows samples of magnesium oxide obtained from seawater by precipitation with 80% or 120% of the stoichiometrical quantity of dolomite lime.

Thus, the experimental data J_1 , i.e. the percent of B_2O_3 "removed" during the sintering process, and J_2 , i.e. the percent of CaO which reacted with TiO_2 , which also indirectly affects the content of B_2O_3 , were used to calculate the coefficients L_{11} , L_{12} and L_{22} .

The coefficient values L_{11} , L_{12} and L_{22} calculated depend on the quantity of TiO_2 added. Therefore, the dependence of the coefficient values L_{11} , L_{12} and L_{22} on per cent TiO_2 was calculated. This dependence, Y, can be expressed by the following equation

$$Y = Ax^2 + Bx + C$$

where

Y = the phenomenological coefficients L_{11} , L_{12} and L_{22}

x =the percent JiO_2

A,B,C = constants

The coefficients were calculated by the least squares method, and are shown by the equations For 80% p.p.tn

$$L_{11} = -0.0833x^2 + 0.6659x + 3.3635$$

$$L_{12} = -0.0614x^2 + 0.4697x + 4.2106$$

$$L_{22} = 0.0310x^2 - 0.3003x + 5.0833$$

For 120% p.p.tn

$$L_{11} = -0.7692x^2 + 5.4010x - 2.8164$$

$$L_{12} = -0.3293x^2 + 2.4333x + 1.6803$$

$$L_{22} = 0.1354x^2 - 1.6347x + 7.4791$$

where x is the per cent TiO_2 .

From these equations for dependence of L on x, coefficients L_{11} , L_{12} and L_{22} can be calculated for other values of x in the range 1-5% TiO₂ added.

As CaO reacts simultaneously with B_2O_3 and with TiO_2 , the two reactions are interrelated, and it was a matter of interest to calculate coefficients for Equations 1 and 2 shown and their dependence on the quantity of TiO_2 added.

4. Conclusions

- 1. The effect of TiO₂ addition on the B₂O₃ content of sintered samples, i.e. on product properties, has been examined.
- 2. Depending on the CaO content of the sample, i.e. the method of obtaining magnesium hydroxide from seawater, it has been found that in magnesium oxide (80% p.p.tn) a lower quantity of TiO_2 (1%) binds almost all the CaO present (which has not reacted with B_2O_3).
- 3. In magnesium oxide (120% p.p.tn) it takes 2% TiO_2 to bind all the CaO present (which has not reacted), so that only a greater quantity (5%) of TiO_2 affects boron removal during sintering to a greater degree.
- 4. Two dependent reactions were analysed, these of formation of Ca₂B₂O₅ and CaTiO₃, respectively.
- 5. Phenomenological coefficients L_{11} , L_{12} and L_{22} were calculated; they describe the mutual influence of the two irreversible processes.

References

- N. PETRIC, B. PETRIC, V. MARTINAC and M. MIROŠEV-IĆ-AZULOVIĆ, in "Science of Sintering: New Directions for Materials Processing and Microstructural Control", edited by D. P. Uskoković, N. Palmour III and R. M. Springs (Plenum Press, New York, 1989) pp. 565-572.
- B. PETRIC and N. PETRIC, Ind. Eng. Chem. Process Des. Dev. 19 (1980) 329.
- M. ČOSIĆ, B. PAVLOVSKI and E. TKALČEC, Sci. Sinter. 21 (1989) 101.
- I. PRIGOZIN, "An Introduction to Thermodynamics of Irreversible Processes" (Graotevinska Knjiga, Belgrade, 1977)
- R. HAASE, "Thermodynamics of Irreversible Processes" Jzdateljstro "MIR", Moscow, 1987)
- H. M. RICHARDSON, M. LESTER, F. T. PALIN and P. T. A. HODSON, (General reference) Trans. Brit. Ceram. Soc. 68 (1969) 29.

Received 30 March 1993 and accepted 5 May 1994